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Dear Dr Weissbrod, 

 

Your Article, "Leveraging fine-mapping and non-European training data to improve trans-ethnic 

polygenic risk scores" has now been seen by 2 referees. You will see from their comments below that 

while they find your work of interest, some important points are raised. We are interested in the 

possibility of publishing your study in Nature Genetics, but would like to consider your response to these 

concerns in the form of a revised manuscript before we make a final decision on publication. 

 

To guide the scope of the revisions, the editors discuss the referee reports in detail within the team, with 

a view to identifying key priorities that should be addressed in revision. As you will see from these 

comments, referees are generally positive about the PolyPred and PolyPred+ methods and the utility for 

cross-ancestry PRS optimization. Both referees have identified aspects of the analyses and the 

methodological details that need to be improved or clarified. We therefore invite you to revise your 

manuscript taking into account all reviewer comments. Please highlight all changes in the manuscript 

text file. At this stage we will need you to upload a copy of the manuscript in MS Word .docx or similar 

editable format. 

 

We are committed to providing a fair and constructive peer-review process. Do not hesitate to contact 

us if there are specific requests from the reviewers that you believe are technically impossible or unlikely 

to yield a meaningful outcome. 
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When revising your manuscript: 

 

*1) Include a “Response to referees” document detailing, point-by-point, how you addressed each 

referee comment. If no action was taken to address a point, you must provide a compelling argument. 

This response will be sent back to the referees along with the revised manuscript. 

 

*2) If you have not done so already please begin to revise your manuscript so that it conforms to our 

Article format instructions, available 

<a href="http://www.nature.com/ng/authors/article_types/index.html">here</a>. 

Refer also to any guidelines provided in this letter. 

 

*3) Include a revised version of any required Reporting Summary: 

https://www.nature.com/documents/nr-reporting-summary.pdf 

It will be available to referees (and, potentially, statisticians) to aid in their evaluation if the manuscript 

goes back for peer review. 

A revised checklist is essential for re-review of the paper. 

 

Please be aware of our <a href="https://www.nature.com/nature-research/editorial-policies/image-

integrity">guidelines on digital image standards.</a> 

 

Please use the link below to submit your revised manuscript and related files: 

 

[REDACTED] 

 

<strong>Note:</strong> This URL links to your confidential home page and associated information about 

manuscripts you may have submitted, or that you are reviewing for us. If you wish to forward this email 

to co-authors, please delete the link to your homepage. 

 

We hope to receive your revised manuscript within four to eight weeks. If you cannot send it within this 

time, please let us know. 

 

Please do not hesitate to contact me if you have any questions or would like to discuss these revisions 

further. 

 

Nature Genetics is committed to improving transparency in authorship. As part of our efforts in this 

direction, we are now requesting that all authors identified as ‘corresponding author’ on published 

papers create and link their Open Researcher and Contributor Identifier (ORCID) with their account on 

the Manuscript Tracking System (MTS), prior to acceptance. ORCID helps the scientific community 
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achieve unambiguous attribution of all scholarly contributions. You can create and link your ORCID from 

the home page of the MTS by clicking on ‘Modify my Springer Nature account’. For more information 

please visit please visit <a 

href="http://www.springernature.com/orcid">www.springernature.com/orcid</a>. 

 

We look forward to seeing the revised manuscript and thank you for the opportunity to review your 

work. 

 

Sincerely, 

 

Wei Li, PhD 

Senior Editor 

Nature Genetics 

One New York Plaza, 47th Fl. 

New York, NY 10004, USA 

www.nature.com/ng 

 

 

 

 

 

Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

In “Leveraging fine-mapping and non-European training data to improve trans-ethnic polygenic risk 

scores" by Weissbrod et al., the authors propose new methods, PolyPred and PolyPred+, for polygenic 

risk scores in trans-ancestry populations. The authors compare these new methods to multiple state-of-

the-art methods, demonstrate the utility of these new methods in simulations and across many traits in 

multiple datasets, and provide extensive "secondary" analyses to explore a variety of scenarios. The 

manuscript is well written, and the study is comprehensive and thorough. The authors clearly 

demonstrate the power of these new methods and the importance of these approaches for using 

polygenic risk scores in non-European populations. 

 

In the first sentence of the abstract, as well as articulated later in the text, the authors make the point 

that PRS based on European training data suffers reduced accuracy in non-European populations. Do we 

KNOW this to be true? What is the evidence? Is it really because the sample size in the non-European 

populations is so much smaller and this is reducing our power? I am not sure that I have seen properly 

powered datasets from non-European populations being used to generate the GWAS summary statistics 
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from which to derive the weights for the PRS. While these new methods do a great job of improving 

upon PRS for more diverse datasets, I worry that the field continues to propagate this statement without 

evidence. Is this truly an issue of the underlying LD structure and heritability of the different ancestry 

groups – or is this an issue of power? 

 

Similarly, in the second sentence of the abstract as well as the 3rd sentence of the introduction, the 

authors discus the drivers of the disparity in PRS methods, but fail to mention sample size. Based on the 

analyses in this paper alone, I would say that sample size could be driving the differential accuracy of 

PRS. Do any of the papers they cite (refs 11-27) explore this issue of sample size of the training data? 

 

In the 2763 overlapping genomic regions, are these equally spaced starting at chromosome 1, position 0 

or are these regions defined in some other more sophisticated manner? 

 

In the section describing the simulations, the authors indicate what summary LD was used for each 

method. Why did you change the summary LD for all of the methods? How would the results change if 

you used the same summary LD across all of the methods? What impact does the summary LD have on 

the accuracy of the methods? 

 

Also in the simulation the authors describe “Using UK10K was almost as accurate as using in-sample LD, 

but using 1000 Genomes Europeans was hugely inaccurate, leading to prediction accuracy even lower 

than that of P+T (Supplementary Table 1), confirming the importance of using a large (population-

matched) LD reference panel to compute PRS41 (on the other hand, using UK10K LD is not 

recommended when using PolyFun for fine-mapping29 due to concerns about false-positive fine-

mapped SNPs, which are not a primary concern when computing PRS).” Did you also try a downsampled 

set of UK10K of the same size as the 1000 Genomes Europeans (N=-489) to confirm whether it is 

primarily sample size or the underlying LD patterns that are driving the results? I expect the 1000 

Genomes Europeans are of more diverse ancestry that the 3500 UK10K. So, is the sample size issue 

creating more smaller LD blocks than the UK10K? Would it look more similar if both are less than 500 

people to estimate the LD? 

 

The compute time differences are quite large (2.8 minutes versus 668 minutes). What is causing the 300-

times longer compute? How much of an impact will this have on the ability to use PolyPred in real-world 

scenarios? 

At the end of the results section, the authors say “We emphasize that efforts to assess the benefit of 

incorporating non-European training data should analyze non-European training data from a cohort that 

is distinct from the target cohort, otherwise results may be inflated due to cohort effects.” This is 

perhaps one of the most critically important points of the paper. Does this mean that the use of very 

large, trans-ancestry meta-analyses to estimate the weights in the training data would be optimal as 

long as the target cohort is not included? Did you evaluate any of the traits using this approach where a 
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meta-analysis of many studies and/or ancestry groups is the basis of the training data? 

 

In the discussion, the authors state “Finally, PRS may implicitly capture GxE interactions, which may not 

be transferable across cohorts or ancestries27,75.” This is an interesting point. But why this would be 

the case is not clear based on any of the analyses provided here. Can this be explained further? How are 

the GxE effects being captured by PRS and more importantly, how can we determine whether they are 

transferable across ancestry? 

 

In the methods, where do you get the 187 functional annotations for Polyfun-pred? 

 

Throughout the paper, the authors use the term “ethnicity”, including in the figures. Is “ethnicity” the 

correct word? It seems as though the focus is really on genetic ancestry, which is different from 

ethnicity. As we try to move as a field toward removing racism and bias, it seems like being more precise 

with our words, such as the use of the word “ancestry” when we are truly using genetics to define 

groups, seems more appropriate. If I am misunderstanding the way that groups are defined herein, and 

ethnicity is more accurate, please keep ethnicity but consider adding an explanation in the paper as to 

why that word is being used. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

This manuscript from Weissbrod, Price and colleagues present an extension of a set of popular stats 

gen/fine mapping technologies, combining them to maximise prediction in non European populations. 

This work is topical and relevant given the excitement around cross-ancestry PRS optimisation. The 

results do seem convincing, and on that basis I am rather positive about the work, but I struggled to go 

through the manuscript and I do think that it could be improved substantially. 

 

First of all, this manuscript is quite technical and it took me some time to understand its flow. An 

additional complication is that not all methods are usable without individual level data, which further 

complicates the choice of methodology. These points are discussed in various sections of the 

manuscript, but a key comment would be whether the authors would consider a flowchart of some sort 

that summarises how the various methods fit together, with or without the availability of individual level 

data. I am aware that saying that a manuscript is hard to follow is a typically unhelpful reviewer's 

comment, but I think it's fair to say that the ratio text:display items is high, and additional help to 

understand how it all fits would help. More sub-headers would perhaps also be helpful, as some sections 

are very lengthy and cover a lot of ground. 

 

Among these complications, the requirement for individual level data is in fact quite critical, as one may 
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argue that the comparisons are somewhat academic given that the use of summary statistics typically 

yields much larger training sets. It does not mean that the insights from this paper aren't important, but I 

would like this individual level data requirement to be made clearer (for example in the introduction). It 

is obviously another layer of complication but I would like to see what Polypred-S is doing in the main 

display items (figures 2-4). 

 

My last major point relates to the general methodology of linearly combining different PRS. 

Fundamentally, BOLT-LMM and Polypred-fun are capturing much of the same signal, so there is some 

double counting and some single counting of signals, which has to be sub-optimum. I would argue that 

some form of signal subtraction would make more sense. I wonder if the authors could comment on that 

point. Dealing with this issue properly is probably beyond the scope of this manuscript, but I think it 

would be helpful to consider what could be done. 

 

Lastly, on a more minor point, the authors speak well of the SBayesR results outperforming PRS-CS and 

LDPred. This puzzles me, as I must say I never managed to get SBayesR to run properly. My struggles are 

echoed by the recent bioRxiv manuscript from Pain, Lewis and colleagues which I am sure the authors 

are aware of (https://doi.org/10.1101/2020.07.28.224782). I'd be keen to understand why such stark 

differences are being observed. 

 

Author Rebuttal to Initial comments   

 

Reviewer #1: (numbers added to reviewer comments) 

In “Leveraging fine-mapping and non-European training data to improve trans-ethnic polygenic risk 

scores" by Weissbrod et al., the authors propose new methods, PolyPred and PolyPred+, for 

polygenic risk scores in trans-ancestry populations. The authors compare these new methods to 

multiple state-of-the-art methods, demonstrate the utility of these new methods in simulations and 

across many traits in multiple datasets, and provide extensive "secondary" analyses to explore a 

variety of scenarios. The manuscript is well written, and the study is comprehensive and thorough. 

The authors clearly demonstrate the power of these new methods and the importance of these 

approaches for using polygenic risk scores in non-European populations. 

We thank the reviewer for the accurate summary, and for suggesting that the power and 

importance of PolyPred and PolyPred+ for PRS in non-European populations has been clearly 

demonstrated. 

1. In the first sentence of the abstract, as well as articulated later in the text, the authors make the 

point that PRS based on European training data suffers reduced accuracy in non-European 
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populations. Do we KNOW this to be true? What is the evidence? Is it really because the sample 

size in the non-European populations is so much smaller and this is reducing our power? I am not 

sure that I have seen properly powered datasets from non-European populations being used to 

generate the GWAS summary statistics from which to derive the weights for the PRS. While these 

new methods do a great job of improving upon PRS for more diverse datasets, I worry that the 

field continues to propagate this statement without evidence. Is this truly an issue of the underlying 

LD structure and heritability of the different ancestry groups – or is this an issue of power? 

The reviewer has raised 2 related questions: (a) is there compelling evidence that PRS based on 

European training data suffer reduced accuracy in non-European populations?; and (b) is the poor 

performance of PRS in non-European populations due to small non-European sample size (which 

reduces power) or to LD and heritability differences? We address each question in turn. 

(a) Is there compelling evidence that PRS based on European training data suffer reduced 

accuracy in non-European populations? 

We believe that there is compelling evidence that PRS based on European training data suffer 

reduced accuracy in non-European populations. For example, Martin et al. 2019 Nat Genet (ref. 13) 

reported that prediction in African individuals based on European-derived summary statistics 

suffered from a 4.5x loss of accuracy vs Europeans. Similar findings were reported in Marquez-

Luna et al. 2017 Genet Epidemiol (ref. 7), Duncan et al. 2019 Nat Commun (ref. 11), Wang et al. 

2020 Nat Commun (ref. 14), Amariuta et al. 2020 Nat Genet (ref. 15), Marnetto et al. 2020 Nat 

Commun (ref. 16), and Chen et al. 2020 Cell (ref. 18). However, we recognize that it is our 

responsibility to provide a clear exposition. Accordingly, we have updated the Introduction section 

(p.2) to expand the description of published work showing that PRS based on European training 

data suffer reduced accuracy in non-European populations. 

We note that the above response does not pertain to PRS based on non-European training data 

(but see (b) below). 

(b) Is the poor performance of PRS in non-European populations due to small non-European 

sample size (which reduces power) or to LD and heritability differences? 

We would like to emphasize the distinction between using European training data vs. non-

European training data to compute PRS in non-European populations. 

If European training data is used, the poor performance is due to LD and heritability differences. 

In particular, the small non-European target sample size is not relevant, as only the training sample 
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size impacts power. We have verified this in a new experiment in which we downsampled the UK 

Biobank (non-British) European target sample to match the size of the UK Biobank African target 

sample; as expected, PRS accuracy remained much larger (+276% larger) in the (non-British) 

European target sample vs. the African target sample, despite the matched target sample sizes. 

Results are reported in Supplementary Table 4, cited in the Analysis of 4 UK Biobank populations 

using UK Biobank British training data subsection of the Results section (p.9). We further note 

that although small target sample sizes do not impact PRS accuracy, they can lead to noisy 

estimates of PRS accuracy. However, the differences that we observe in PRS accuracies between 

European vs. non-European target cohorts are statistically significant, and we now provide p-

values for these differences in Supplementary Table 4 and Supplementary Table 6, cited in the 

Analysis of 4 UK Biobank populations using UK Biobank British training data subsection of the 

Results section (p.7). 

If non-European training data is used, the poor performance is due to small non-European training 

sample size (which reduces accuracy). Indeed, the dependence of PRS accuracy on training 

sample size has previously been demonstrated in Chatterjee et al. 2016 Nat Rev Genet (ref. 1), 

Gurdasani et al. 2019 Nat Rev Genet (ref. 12), Martin et al. 2019 Nat Genet (ref. 13), Amariuta et 

al. 2020 Nat Genet (ref. 15), Mills et al. 2020 Nat Genet (ref. 21), Vilhjalmsson et al. 2015 Am J 

Hum Genet (ref. 33). 

Again, we recognize that it is our responsibility to provide a clear exposition. We have updated 

the Abstract (p.1) and Introduction section (p.2) to clarify these points. 

2. Similarly, in the second sentence of the abstract as well as the 3rd sentence of the introduction, 

the authors discuss the drivers of the disparity in PRS methods, but fail to mention sample size. 

Based on the analyses in this paper alone, I would say that sample size could be driving the 

differential accuracy of PRS. Do any of the papers they cite (refs 11-27) explore this issue of 

sample size of the training data? 

(also see part (b) of response to Reviewer #1 Comment 1) 

Again, we would like to emphasize the distinction between using European training data vs. non-

European training data to compute PRS in non-European populations. 

If European training data is used, the small non-European test sample size is not relevant, as only 

the training sample size impacts power. 
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If non-European training data is used, the poor performance is due to small non-European training 

sample size (which reduces accuracy). Indeed, the dependence of PRS accuracy on training 

sample size has previously been demonstrated in Chatterjee et al. 2016 Nat Rev Genet (ref. 1), 

Gurdasani et al. 2019 Nat Rev Genet (ref. 12), Martin et al. 2019 Nat Genet (ref. 13), Amariuta et 

al. 2020 Nat Genet (ref. 15), Mills et al. 2020 Nat Genet (ref. 21), Vilhjalmsson et al. 2015 Am J 

Hum Genet (ref. 33). 

As noted above, we have updated the Abstract (p.1) and Introduction section (p.2) to clarify these 

points. 

3. In the 2763 overlapping genomic regions, are these equally spaced starting at chromosome 1, 

position 0 or are these regions defined in some other more sophisticated manner? 

The 2,763 overlapping genomic regions are equally spaced starting at chromosome 1, position 0 

(the definition of these genomic regions was first described in Weissbrod et al. 2020 Nat Genet 

(ref. 35)). We have updated the PolyPred and its summary statistic-based analogues subsection 

of the Methods section (p.17) to clarify this point. 

4. In the section describing the simulations, the authors indicate what summary LD was used for 

each method. Why did you change the summary LD for all of the methods? How would the results 

change if you used the same summary LD across all of the methods? What impact does the 

summary LD have on the accuracy of the methods? 

The reviewer has raised 3 related questions: (a) why did we use different summary LD data for 

different methods?; (b) what would happen if we use the same summary LD data for all methods?; 

and (c) what is the impact of summary LD data on PRS accuracy? We address each question in 

turn. 

(a) Why did we use different summary LD data for different methods? 

The reviewer is correct that we used different summary LD data for different methods. Specifically, 

PolyFun-pred, SBayesR, and PRS-CS, three of the methods included in our primary comparisons 

(we have added PRS-CS as a main method throughout our revised manuscript; see response to 

Reviewer #2 Comment 5), make use of summary LD in European training data. PolyFun-pred (the 

first component of PolyPred and PolyPred+) uses summary LD for all 18 million SNPs with 

MAF≥0.1% in the European training data (following the recommendations of Weissbrod et al. 2020 

Nat Genet (ref. 35), the paper that introduced the PolyFun method). SBayesR uses summary LD for 

1.2 million HapMap 3 SNPs (following the recommendations and publicly available LD matrices 

of Lloyd-Jones et al. 2019 Nat Commun (ref. 38), the paper that introduced the SBayesR method). 
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PRS-CS also uses summary LD for 1.2 million HapMap 3 SNPs (following the recommendations 

and publicly available LD matrices of Ge et al. 2019 Nat Commun (ref. 39), the paper that 

introduced the PRS-CS method). 

PolyFun-pred, SBayesR, and PRS-CS use different algorithms to impose sparsity on LD matrices, 

and different file formats to store them. Thus, to run SBayesR or PRS-CS using summary LD from 

the same 18 million SNPs used by PolyFun-pred would require rerunning the summary LD 

computation pipeline of the respective methods (SBayesR or PRS-CS) from scratch. However, 

we believe that this would be computationally infeasible, based on the information provided in 

Lloyd-Jones et al. 2019 Nat Commun (ref. 38). Similarly, we believe that it would be 

computationally infeasible to run PRS-CS using 18 million SNPs, based on the information 

provided in Ge et al. 2019 Nat Commun (ref. 39). It is also not technically possible in the case of 

PRS-CS, because the authors of PRS-CS have not released software to compute LD matrices. 

We have updated the Analysis of 4 UK Biobank populations using UK Biobank British training data 

subsection of the Results section (p.8) and the Discussion section (p.15) to clarify these points. 

(b) What would happen if we use the same summary LD data for all methods? 

As noted in (a) above, we believe that running SBayesR or PRS-CS using summary LD from the 

same 18 million SNPs used by PolyFun-pred would be computationally infeasible, based on the 

information provided in Lloyd-Jones et al. 2019 Nat Commun (ref. 38) and in Ge et al. 2019 Nat 

Commun (ref. 39), and we have updated the Analysis of 4 UK Biobank populations using UK 

Biobank British training data subsection of the Results section (p.8) and the Discussion section 

(p.15) to clarify this point. 

However, we have run SBayesR using summary LD from a SNP set larger than 1.2 million SNPs. 

In detail, in addition to the summary LD for 1.2 million HapMap 3 SNPs publicly released by Lloyd-

Jones et al. 2019 Nat Commun (ref. 38), those authors have also publicly released summary LD for 

2.8 million SNPs (pruned UK Biobank SNPs). We have performed secondary analyses using the 

summary LD for 2.8 million SNPs (SBayesR-2.8M) instead of summary LD for 1.2 million HapMap 

3 SNPs (SBayesR). We determined that SBayesR-2.8M was less accurate than SBayesR 

(significantly so for Africans) (Supplementary Table 5, cited in the Analysis of 4 UK Biobank 

populations using UK Biobank British training data subsection of the Results section (p.8)). (These 

results do not contradict the findings of Lloyd-Jones et al. 2019 Nat Commun (ref. 38), who analyzed 

only 2 of 12 real traits using summary LD from 2.8 million SNPs, and reported that using summary 

LD from 2.8 million SNPs instead of summary LD from 1.2 million HapMap 3 SNPs improved 

prediction accuracy for 1 of 2 traits). Thus, there is little reason to believe that further expanding the 

SNP set used to compute summary LD would improve the performance of SBayesR. We note that 
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we use SBayesR (instead of SBayesR-2.8M) in all primary comparisons, which is a conservative 

choice since SBayesR outperforms SBayesR-2.8M. We have updated

the Analysis of 4 UK Biobank populations using UK Biobank British training data subsection of the 

Results section (p.8) to clarify this point. 

As an alternative, we performed simulations in which we trained PolyFun-pred using only 1.2 

million HapMap3 SNPs (instead of 18 million MAF>0.1% SNPs) and obtained substantially and 

significantly reduced accuracy (-11% relative-R2 in non-British Europeans vs. using all 18 million 

SNPs). We thus do not recommend running PolyFun-pred with a reduced SNP set. We have 

updated the Simulations with in-sample LD subsection of the Results section (p.6, citing 

Supplementary Table 1) and the Discussion section (p.15) to clarify this point. 

We note that we applied P+T using 18 million MAF>0.1% SNPs, similar to PolyPred. However, 

using P+T with a restricted SNP set is very unlikely to improve its performance, because it selects 

a single SNP from each LD block, and is thus very unlikely to be adversely affected by a denser 

SNP set. 

(c) What is the impact of summary LD data on PRS accuracy? 

Summary LD can impact PRS accuracy via (i) SNP density, (ii) sample size of the LD reference 

panel, and (iii) similarity between the ancestry of the LD reference panel and the ancestry of the 

training samples from which summary statistics are analyzed to compute PRS. We discuss each 

of these factors in turn. 

(i) SNP density. 

As noted in (b) above, SBayesR-2.8M was less accurate than SBayesR (significantly so for 

Africans), and there is little reason to believe that further expanding the SNP set used to compute 

summary LD would improve the performance of SBayesR. On the other hand, PolyFun-pred relies 

on fine-mapping, which can be severely compromised by using a reduced SNP set. To 

demonstrate this, we performed simulations in which we trained PolyFun-pred using only 1.2 

million HapMap3 SNPs (instead of 18 million MAF>0.1% SNPs) and obtained substantially and 

significantly reduced accuracy (-11% relative-R2 in non-British Europeans vs. using all 18 millions 

SNPs). We thus do not recommend running PolyFun-pred with a reduced SNP set. We have 

updated the Simulations with in-sample LD subsection of the Results section (p.6) and the 

Discussion section (p.15) to clarify this point. 
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(ii) sample size of the LD reference panel. 

Larger LD reference panels improve PRS accuracy because they enable more accurate LD 

estimates. We performed three new experiments to verify this: 

First, we ran PolyFun-pred using summary LD from UK10K (N=3,567) in real trait analyses, or 

various subsets of UK10K (N=489-3,567) in simulations, instead of summary LD from UK Biobank 

(337K LD reference samples) (also see (iii) below for analyses using summary LD from 1000 

Genomes Europeans). In real trait analyses, PolyFun-pred using the UK10K LD reference panel 

suffered a substantial and significant loss of accuracy compared to using in-sample LD from UK 

Biobank British individuals (N=337K) (−86% relative-R2). Results are reported in Supplementary 

Table 4, cited in the Analysis of 4 UK Biobank populations using UK Biobank British training data 

subsection of the Results section (p. 8). In simulations, the accuracy of PolyFun-pred decreased 

as we subsampled smaller and smaller subsets of UK10K, with a 92% smaller relative-R2 when 

using only N=489 UK10K individuals (the same sample size as the 1000 Genomes project 

Europeans). Results are reported in Supplementary Table 1, cited in the Simulations with 

reference LD subsection of the Supplementary Note (p.6), which is cited in the Simulations with 

in-sample LD subsection of the Results section (p.5). 

Second, we ran SBayesR using summary LD from various subsets of UK10K (N=489-3,567) in 

real trait analyses, or from UK10K (N=3,567) in simulations (also see (iii) below for analyses using 

summary LD from 1000 Genomes Europeans). In real trait analyses, SBayesR accuracy using 

the full UK10K LD reference panel was very similar to and statistically indistinguishable from the 

accuracy obtained using the LD reference panels provided by the authors of SBayesR (N=50K 

UK Biobank British individuals). However, the relative-R2 was 24% smaller when using only N=489 

UK10K individuals. Results are reported in Supplementary Table 4, cited in the Analysis of 4 UK 

Biobank populations using UK Biobank British training data subsection of the Results section 

(p.8). In simulations, we observed a smaller but statistically significant loss of accuracy when 

using a UK10K LD reference panel. Results are reported in Supplementary Table 1, cited in the 

Simulations with reference LD subsection of the Supplementary Note (p.6), which is cited in the 

Simulations with in-sample LD subsection of the Results section (p.5). 

Third, we ran PRS-CS using summary LD from the 1000 Genomes project Europeans (N=489), 

in both simulations and real trait analyses (we could not use summary LD from UK10K because 

PRS-CS does not allow computing LD matrices). In real trait analyses, the accuracy of PRS-CS 

was very similar to the accuracy obtained using in-sample LD from UK Biobank British individuals 

(N=337K), with no significant differences. Results are reported in Supplementary Table 4, cited in 

the Analysis of 4 UK Biobank populations using UK Biobank British training data subsection of the 

Results section (p.8). Interestingly, in simulations, the relative-R2 of PRS-CS using summary LD 
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from the 1000 Genomes project Europeans was up to 42% smaller than when using in-sample 

LD from UK Biobank British, suggesting that the effect of LD reference panel sample size on PRS-

CS accuracy is sensitive to the underlying genetic architecture. Results are reported in 

Supplementary Table 1, cited in the Simulations with reference LD subsection of the 

Supplementary Note (p.6), which is cited in the Simulations with in-sample LD subsection of the 

Results section (p.5). 

(iii) similarity between the ancestry of the LD reference panel and the ancestry of the training 

samples from which summary statistics are analyzed to compute PRS. 

The LD reference panel should ideally have the same ancestry as the training samples from which 

summary statistics are analyzed to compute PRS. In our study, the training samples consist of up 

to 337K British Europeans from UK Biobank, and the LD reference panel in our primary analyses 

consists of the same set of 337K British Europeans. 

It is challenging to precisely quantify the impact of ancestry mismatch, as we do not currently have 

access to a large (e.g. N>3,000) sequenced non-British European sample with which to explore 

the impact of ancestry mismatch; analyses of smaller LD reference samples would likely be 

dominated by the impact of sample size of the LD reference panel (see (ii) above). 

Nevertheless, we attempted to evaluate the effect of LD mismatch by running PolyFun-pred, 

SBayesR, and PRS-CS using an LD reference panel consisting of N=489 European individuals from 

the 1000 Genomes project, in both simulations and real trait analyses. We obtained reduced 

accuracy in simulations for all methods, and in real trait analyses for PolyFun-pred and SBayesR; 

the difference was not statistically significant for PRS-CS in real trait analyses. In the case of 

SBayesR, we determined in real trait analyses that this loss of accuracy primarily stems from LD 

mismatch (rather than reduced sample size) by repeating the analysis with N=489 individuals from 

UK10K, for which we obtained significantly improved accuracy. On the other hand, results for 

PolyFun-pred were significantly less accurate even when using UK10K individuals in real trait 

analyses, suggesting that the less accurate PolyFun-pred results are primarily driven by reduced 

sample size. Simulation results are reported in Supplementary Table 1, cited in the Simulations with 

reference LD subsection of the Supplementary Note (p.6), which is cited in the Simulations with in-

sample LD subsection of the Results section (p.5). Real trait analysis results are reported in 

Supplementary Table 4, cited in the Analysis of 4 UK Biobank populations using UK Biobank British 

training data subsection of the Results section (p.8). 

5. Also in the simulation the authors describe “Using UK10K was almost as accurate as using in-

sample LD, but using 1000 Genomes Europeans was hugely inaccurate, leading to prediction 
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accuracy even lower than that of P+T (Supplementary Table 1), confirming the importance of using 

a large (population-matched) LD reference panel to compute PRS41 (on the other hand, using 

UK10K LD is not recommended when using PolyFun for fine-mapping29 due to concerns about 

false-positive fine-mapped SNPs, which are not a primary concern when computing PRS).” Did 

you also try a downsampled set of UK10K of the same size as the 1000 Genomes project 

Europeans (N=-489) to confirm whether it is primarily sample size or the underlying LD patterns 

that are driving the results? I expect the 1000 Genomes Europeans are of more diverse ancestry 

that the 3500 UK10K. So, is the sample size issue creating more smaller LD blocks than the 

UK10K? Would it look more similar if both are less than 500 people to estimate the LD? 

(also see part (c).(ii) of response to Reviewer #1 Comment 4) 

We agree that this is a valuable experiment. We have performed new simulations and real data 

analysis to investigate the effect of using LD summary from either the full or a reduced subset of 

UK10K on the accuracy of PolyFun-pred and SBayesR (we did not perform this experiment for 

PRS-CS because the PRS-CS software does not allow computing custom-tailored LD matrices). 

First, we ran PolyFun-pred using summary LD from UK10K (N=3,567) in real trait analyses, or 

various subsets of UK10K (N=489-3,567) in simulations, instead of summary LD from UK Biobank 

(337K LD reference samples). In real trait analyses, PolyFun-pred using the UK10K LD reference 

panel suffered a substantial and significant loss of accuracy compared to using in-sample LD from 

UK Biobank British individuals (N=337K) (−86% relative-R2). Results are reported in 

Supplementary Table 4, cited in the Analysis of 4 UK Biobank populations using UK Biobank 

British training data subsection of the Results section (p.8). In simulations, the accuracy of 

PolyFun-pred decreased as we subsampled smaller and smaller subsets of UK10K, with a 92% 

smaller relative-R2 when using only N=489 UK10K individuals (the same sample size as the 1000 

Genomes project Europeans). Results are reported in Supplementary Table 1, cited in the 

Simulations with reference LD subsection of the Supplementary Note (p.6), which is cited in the 

Simulations with in-sample LD subsection of the Results section (p.5). 

Second, we ran SBayesR using summary LD from various subsets of UK10K (N=489-3,567) in 

real trait analyses, or from UK10K (N=3,567) in simulations. In real trait analyses, SBayesR 

accuracy using the full UK10K LD reference panel was very similar to and statistically 

indistinguishable from the accuracy obtained using the LD reference panels provided by the 

authors of SBayesR (N=50K UK Biobank British individuals). However, the relative-R2 was 24% 

smaller when using only N=489 UK10K individuals. Results are reported in Supplementary Table 

4, cited in the Analysis of 4 UK Biobank populations using UK Biobank British training data 

subsection of the Results section (p.8). In simulations, we observed a smaller but statistically 

significant loss of accuracy when using a UK10K LD reference panel. Results are reported in 
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Supplementary Table 1, cited in the Simulations with reference LD subsection of the 

Supplementary Note (p.6), which is cited in the Simulations with in-sample LD subsection of the 

Results section (p.5). 

6. The compute time differences are quite large (2.8 minutes versus 668 minutes). What is causing 

the 300-times longer compute? How much of an impact will this have on the ability to use PolyPred 

in real-world scenarios? 

The reviewer has raised 2 related questions: (a) what is causing the 300-times larger compute 

time for PolyPred vs. SBayesR?; and (b) what is the impact of the larger compute time of PolyPred 

in real-world settings? We address each question in turn. 

(a) What is causing the 300-times larger compute time for PolyPred vs. SBayesR? 

The larger compute time of PolyPred (and its summary statistic-based analogues) is dominated 

by the PolyFun-pred component, which is computationally intensive because (i) PolyFun-pred 

performs fine-mapping, which is a more computationally intensive task than other approaches to 

computing PRS coefficients (e.g. computing posterior mean tagging effect sizes under an 

assumed prior, as in SBayesR); and (ii) PolyFun-pred analyzes a large number of SNPs, e.g. 18 

million SNPs in UK Biobank training data and 8.1 million SNPs in ENGAGE training data (vs. 1.2 

million SNPs for SBayesR). We note that running SBayesR using 18 million SNPs is not 

computationally feasible, but we determined that running SBayesR using 2.8 million SNPs 

(SBayesR-2.8M) is less accurate than SBayesR (significantly so for Africans) (see part (b) of 

response to Reviewer #1 Comment 4). We further note that all of the above points pertain to the 

time required to train the PRS model, and not the time required to apply the PRS model to compute 

predictions in target samples (which is extremely small). We have updated the Simulations with 

in-sample LD subsection of the Results section (p.6) and the Discussion section (p.15) to clarify 

these points. 

(b) What is the impact of the larger compute time of PolyPred in real-world settings? 

We anticipate that the larger compute time of PolyPred will have little impact in real-world settings. 

The relatively computationally expensive step of training the PRS model is performed only once 

(and can easily be parallelized across loci), whereas the frequently repeated set of applying the 

PRS model to compute predictions in test samples is computationally fast (with the same 

computational cost for PolyPred vs. other methods). We have updated the Discussion section 

(p.15) to clarify this point. 

7. At the end of the results section, the authors say “We emphasize that efforts to assess the 

benefit of incorporating non-European training data should analyze non-European training data 
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from a cohort that is distinct from the target cohort, otherwise results may be inflated due to cohort 

effects.” This is perhaps one of the most critically important points of the paper. Does this mean 

that the use of very large, trans-ancestry meta-analyses to estimate the weights in the training 

data would be optimal as long as the target cohort is not included? Did you evaluate any of the 

traits using this approach where a meta-analysis of many studies and/or ancestry groups is the 

basis of the training data? 

The reviewer has raised 3 related questions: (a) is there an “optimal” way to choose a training 

cohort that is distinct from the target cohort?; (b) can PolyPred be applied to training data consisting 

of a meta-analysis of many studies?; and (c) can PolyPred be applied to training data consisting of 

a meta-analysis of different ancestry groups? We address each question in turn. 

(a) Is there an “optimal” way to choose a training cohort that is distinct from the target cohort? 

We believe there is no single “optimal” way to choose a training cohort that is distinct from the 

target cohort. In particular, training sample size is a critical factor impacting PRS accuracy, and 

choices that maximize training sample size will depend on the particular disease/trait analyzed. 

We have updated the Discussion section (p.14) to clarify this point. In (b) and (c) below, we 

discuss two specific strategies mentioned by the reviewer. 

(b) Can PolyPred be applied to training data consisting of a meta-analysis of many studies? 

In our previously submitted manuscript, we stated that PolyPred-S (which linearly combines 

PolyFun-pred and SBayesR) can be applied instead of PolyPred (which linearly combines PolyFun-

pred and BOLT-LMM) when only summary statistics are available; we further stated that a large 

(N>3K) LD reference panel should be used. Training data consisting of a meta-analysis of many 

studies is an example of this scenario. We agree with the reviewer’s feedback that this is a very 

important scenario to consider, and have thus performed a new analysis of real traits pertaining to 

this scenario (also see response to part (b) of Reviewer #2 Comment 2). Our results are 

summarized in Figure 5 (and the new Table 2) and are detailed below. 

We used summary statistics from the European Network for Genetic and Genomic Epidemiology 

(ENGAGE) consortium (Budin-Ljøsne et al. 2014 Eur J Hum Genet, ref. 68) to train several 

methods on four traits (BMI, waist-hip-ratio (adjusted for BMI), total cholesterol, and triglycerides), 

and evaluated the prediction accuracy using the same four UK Biobank populations analyzed 

throughout our manuscript (Non-British Europeans, South-Asians, East-Asians, and Africans). We 

selected this particular meta-analysis because it includes a dense set of 8.1 million imputed SNPs, 

which enables fine-mapping. For each method, we used the same LD reference panel used in the 

other primary analyses, based on UK Biobank British individuals; we emphasize that unlike the 

other primary analyses in this manuscript, the LD reference panel was misspecified, because it 
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was not based on in-sample LD. We excluded BOLT-LMM from this analysis (because it cannot 

use summary statistics) and included PRS-CS, following our decision to include PRS-CS as a main 

method in the manuscript. In the following, we denote PolyPred-P as the linear combination of 

PolyFun-pred and PRS-CS, and PolyPred-S as the linear combination of PolyFun-pred and 

SBayesR. 

The results are summarized in our new Figure 5. Briefly, PolyPred-P was generally the most 

accurate method, and PRS-CS outperformed SBayesR, with a significant improvement for non-

British Europeans and Africans (unlike when using UK Biobank training data, where SBayesR 

outperformed PRS-CS). However, the differences between the methods were mostly not 

statistically significant due to large standard errors. 

In detail, the average relative-R2 in Non-British Europeans was 0.045 for PolyPred-P, 0.044 for 

PolyPred-S, 0.039 for PRS-CS, 0.033 for SBayesR, and 0.022 for P+T. For African-ancestry 

individuals (obtaining the lowest prediction accuracy under all methods), the average relative-R2
 

was 0.015 for PolyPred-P, 0.008 for PolyPred-S, 0.013 for PRS-CS, 0.004 for SBayesR, and 0.010 

for P+T. We reiterate that the differences between the methods were mostly not statistically 

significant due to moderately large standard errors (Figure 5), and thus caution should be exercised 

in their interpretation. Nevertheless, these results demonstrate that combining PolyFun-pred with 

another method can be beneficial when analyzing summary statistics from a meta-analysis of many 

studies. We further note that PRS-CS outperforms SBayesR in the presence of a misspecified LD 

reference panel, consistent with a previous report (Pain et al. 2021 PloS Genet, ref. 71). We have 

added a new Analysis of 4 UK Biobank populations using ENGAGE meta-analysis training data 

subsection of the Results section (p.10, citing Figure 5) to include these results. 

We have also performed new simulations and real trait analyses of UK Biobank training data using 

reference LD; see part (c) (ii) of response to Reviewer #1 Comment 4 and response to Reviewer 

#1 Comment 5. 

(c) Can PolyPred be applied to training data consisting of a meta-analysis of different ancestry 

groups? 

One of the main conclusions of our work is that leveraging training data from different ancestry 

groups (e.g. different continental ancestries) improves PRS in diverse populations. However, we 

recommend against using training data consisting of a traditional fixed-effect meta-analysis of 

GWAS data from different ancestry groups, for two reasons: (i) fixed-effect meta-analysis implies 

that European training samples and training samples from the non-European target population 

would receive equal weight, whereas our work shows that the latter should receive higher weight 
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in order to maximize PRS accuracy; and (ii) it may be challenging to construct an LD reference 

panel whose ancestry matches the ancestry of the meta-analysis of different ancestry groups. 

When possible, it would be preferable to separately incorporate European training data and 

training data from the non-European target population, with appropriate LD reference panels. We 

have updated the Discussion section (p.15) to clarify this point. 

8. In the discussion, the authors state “Finally, PRS may implicitly capture GxE interactions, which 

may not be transferable across cohorts or ancestries27,75.” This is an interesting point. But why 

this would be the case is not clear based on any of the analyses provided here. Can this be 

explained further? How are the GxE effects being captured by PRS and more importantly, how 

can we determine whether they are transferable across ancestry? 

We believe that the most interesting case is that of a GxE effect in which the GxE effect is shared 

across ancestries but the (average) value of E differs across ancestries. If E (and GxE) is unmodeled, 

G effects will (appear to) differ across ancestries; this is a possible explanation for cross-population 

genetic correlations significantly less than 1 for some diseases/traits, which are well-documented 

(Martin et al. 2019 Nat Genet (ref. 13), Shi et al. 2021 Nat Commun (ref. 30)). This is one of the 

motivations for leveraging training data from non-European target populations. However (if E is 

unmodeled), it is difficult to distinguish this scenario from the scenario of different G effects for other 

reasons. We have updated the Discussion section (p.14) to clarify these points. 

9. In the methods, where do you get the 187 functional annotations for Polyfun-pred? 

The 187 functional annotations for PolyFun-pred were previously described in Weissbrod et al. 2020 

Nat Genet (ref. 35), which introduced the PolyFun method. We have updated the PolyPred and its 

summary statistic-based analogues subsection of the Methods section (p.18) to clarify that the 187 

functional annotations were previously described in Weissbrod et al. 2020, to add text summarizing 

the content of the 187 functional annotations (10 common MAF bins (MAF≥0.05); 10 low-frequency 

MAF bins (0.05>MAF≥0.001); 6 LD-related annotations for common SNPs (levels of LD, predicted 

allele age, recombination rate, nucleotide diversity, background selection statistic, CpG content); 5 

LD-related annotations for low-frequency SNPs; 40 binary functional annotations for common SNPs; 

7 continuous functional annotations for common SNPs; 40 binary functional annotations for low-

frequency SNPs; 3 continuous functional annotations for low-frequency SNPs; and 66 annotations 

constructed via windows around other annotations), and to cite a new Supplementary Table 11 

listing the 187 functional annotations. 
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10. Throughout the paper, the authors use the term “ethnicity”, including in the figures. Is 

“ethnicity” the correct word? It seems as though the focus is really on genetic ancestry, which is 

different from ethnicity. As we try to move as a field toward removing racism and bias, it seems 

like being more precise with our words, such as the use of the word “ancestry” when we are truly 

using genetics to define groups, seems more appropriate. If I am misunderstanding the way that 

groups are defined herein, and ethnicity is more accurate, please keep ethnicity but consider 

adding an explanation in the paper as to why that word is being used. 

We agree with the reviewer that our analyses pertain to ancestry and not to ethnicity. We have 

changed all instances of “ethnicity” (resp. “trans-ethnic”) to “ancestry” (resp. “cross-population”). 

Reviewer #2: (numbers added to reviewer comments) 

1. First of all, this manuscript is quite technical and it took me some time to understand its flow. 

An additional complication is that not all methods are usable without individual level data, which 

further complicates the choice of methodology. These points are discussed in various sections of 

the manuscript, but a key comment would be whether the authors would consider a flowchart of 

some sort that summarises how the various methods fit together, with or without the availability of 

individual level data. I am aware that saying that a manuscript is hard to follow is a typically 

unhelpful reviewer's comment, but I think it's fair to say that the ratio text:display items is high, 

and additional help to understand how it all fits would help. More sub-headers would perhaps also 

be helpful, as some sections are very lengthy and cover a lot of ground. 

We agree that the manuscript is quite technical and thus difficult to follow. The reviewer has 

suggested that we (a) add a flowchart summarizing the various methods, with or without the 

availability of individual-level data, (b) consider adding additional display items, and (c) add more 

sub-headings. We thank the reviewer for the suggestions, and address each suggestion in turn. 

(a) add a flowchart summarizing the various methods, with or without the availability of individual-

level data. 

We agree and have added this flowchart: Figure 2, cited in the Overview of methods subsection 

of the Results section (p.4) and the Discussion section (p.13). 

(b) consider adding additional display items.  

We agree and have added 4 new display items: 
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A new Figure 1, cited in the Overview of methods subsection of the Results section (p.4), providing 

a schematic overview of PolyPred (and PolyPred-S and PolyPred-P). 

A new Figure 2, cited in the Overview of methods subsection of the Results section (p.4) and the 

Discussion section (p.13), providing a flowchart summarizing the various methods (see (a) above). 

A new Table 2, cited in the Overview of methods subsection of the Results section (p.4) and the 

Discussion section (p.13), providing a summary of the relative performance of constituent PRS 

methods under various settings, and links to the corresponding Figures/Tables. 

A new Figure 5, cited in the new Analysis of 4 UK Biobank populations using ENGAGE meta-

analysis training data subsection of the Results section (p.10), providing the results of the new 

ENGAGE analysis (see part (b) of response to Reviewer #1 Comment 7 and part (b) of response 

to Reviewer #2 Comment 2). 

(c) add more sub-headings. 

We have split the Simulations subsection of the Results section into two subsections: the 

Simulations with in-sample LD subsection of the Results section, and a new Supplementary Note 

subsection titled Simulations with reference LD (see part (c) (ii) of response to Reviewer #1 

Comment 4 and response to Reviewer #1 Comment 5). We note that the Simulations subsection 

of the Results section was the longest subsection (and more simulations have been added). We 

are open to moving the Simulations with reference LD subsection of the Supplementary Note to 

the Results section if editors and/or reviewers express a strong preference, but we believe this 

would likely be incompatible with the Nature Genetics word count limit. 

We have also added a new Results subsection titled Analysis of 4 UK Biobank populations using 

ENGAGE meta-analysis training data (p.10), citing a new Figure 5 (see part (b) of response to 

Reviewer #1 Comment 7 and part (b) of response to Reviewer #2 Comment 2). 

We have elected not to add sub-subsection headings, but we are open to adding these if the 

editors and/or reviewers express a strong preference. 

2. Among these complications, the requirement for individual level data is in fact quite critical, as 

one may argue that the comparisons are somewhat academic given that the use of summary 

statistics typically yields much larger training sets. It does not mean that the insights from this 

paper aren't important, but I would like this individual level data requirement to be made clearer 

(for example in the introduction). 
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The reviewer has raised 2 related concerns: (a) the dependence of the PolyPred method on 

individual-level data should be more strongly emphasized; and (b) the comparisons are somewhat 

academic given the importance of summary statistic data sets. We address each concern in turn. 

(a) The dependence of the PolyPred method on individual-level data should be more strongly 

emphasized. 

We have modified the Abstract (p.1), Introduction section (p.2) and Discussion section (p.14) to 

more strongly emphasize the dependence of PolyPred on individual-level data, while also noting 

that the same framework can be applied to summary statistic data sets (PolyPred-S and PolyPred-

P; see (b)). 

(b) The comparisons are somewhat academic given the importance of summary statistic data 

sets. 

We agree that the analysis of summary statistic data sets is important (also see part (b) of 

response to Reviewer #1 Comment 7). 

In our previously submitted manuscript, we stated that PolyPred-S (which linearly combines 

PolyFun-pred and SBayesR) can be applied instead of PolyPred (which linearly combines 

PolyFun-pred and BOLT-LMM) when only summary statistics are available; we further stated that 

a large (N>3K) LD reference panel should be used. Training data consisting of a meta-analysis of 

many studies is an example of this scenario. We agree with the reviewer’s feedback that this is a 

very important scenario to consider and have thus performed a new analysis of real traits 

pertaining to this scenario (also see response to part (b) of Reviewer #1 Comment 7). Our results 

are summarized in Figure 5 (and the new Table 2) and are detailed below. 

We used summary statistics from the European Network for Genetic and Genomic Epidemiology 

(ENGAGE) consortium (Budin-Ljøsne et al. 2014 Eur J Hum Genet, ref. 68) to train several 

methods on four traits (BMI, waist-hip-ratio (adjusted for BMI), total cholesterol, and triglycerides), 

and evaluated the prediction accuracy using the same four UK Biobank populations analyzed 

throughout our manuscript (Non-British Europeans, South-Asians, East-Asians, and Africans). We 

selected this particular meta-analysis because it includes a dense set of 8.1 million imputed SNPs, 

which enables fine-mapping. For each method, we used the same LD reference panel used in the 

other primary analyses, based on UK Biobank British individuals; we emphasize that unlike the 

other primary analyses in this manuscript, the LD reference panel was misspecified, because it 

was not based on in-sample LD. We excluded BOLT-LMM from this analysis (because it cannot 

use summary statistics) and included PRS-CS, following our decision to include PRS-CS as a main 

method in the manuscript. In the following, we denote PolyPred-P as the linear combination of 
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PolyFun-pred and PRS-CS, and PolyPred-S as the linear combination of PolyFun-pred and 

SBayesR. 

The results are summarized in our new Figure 5. Briefly, PolyPred-P was generally the most 

accurate method, and PRS-CS outperformed SBayesR, with a significant improvement for non-

British Europeans and Africans (unlike when using UK Biobank training data, where SBayesR 

outperformed PRS-CS). However, the differences between the methods were mostly not 

statistically significant due to large standard errors. 

In detail, the average relative-R2 in Non-British Europeans was 0.045 for PolyPred-P, 0.044 for 

PolyPred-S, 0.039 for PRS-CS, 0.033 for SBayesR, and 0.022 for P+T. For African-ancestry 

individuals (obtaining the lowest prediction accuracy under all methods), the average relative-R2
 

was 0.015 for PolyPred-P, 0.008 for PolyPred-S, 0.013 for PRS-CS, 0.004 for SBayesR, and 0.010 

for P+T. We reiterate that the differences between the methods were mostly not statistically 

significant due to moderately large standard errors (Figure 5), and thus caution should be 

exercised in their interpretation. Nevertheless, these results demonstrate that combining PolyFun-

pred with another method can be beneficial when analyzing summary statistics from a meta-

analysis of many studies. We further note that PRS-CS outperforms SBayesR in the presence of 

a misspecified LD reference panel, consistent with a previous report (Pain et al. 2021 PloS Genet, 

ref. 71). We have added a new Analysis of 4 UK Biobank populations using ENGAGE meta-

analysis training data subsection of the Results section (p.10, citing Figure 5) to include these 

results. 

We have also performed new simulations and real trait analyses of UK Biobank training data using 

reference LD; see part (c) (ii) of response to Reviewer #1 Comment 4 and response to Reviewer 

#1 Comment 5. 

3. It is obviously another layer of complication but I would like to see what Polypred-S is doing in 

the main display items (figures 2-4). 

We agree, and have updated Table 1, Figure 2 (new), Figure 3 (formerly Figure 1), Figure 4 

(formerly Figure 2), Figure 5 (new), Figure 6 (formerly Figure 3) and Figure 7 (formerly Figure 4) to 

include PolyPred-S (which uses SBayesR) and PolyPred-P (which uses PRS-CS) (we have added 

PRS-CS as a main method throughout our revised manuscript; see response to Reviewer 

#2 Comment 5). In detail: 

Figure 3 (formerly Figure 1) now includes PolyPred-S and PolyPred-P, and we have updated the 

Simulations with in-sample LD subsection of the Results section (p. 4-5) accordingly. 
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Figure 4 (formerly Figure 2) now includes PolyPred-S and PolyPred-P, and we have updated the 

Analysis of 4 UK Biobank populations using UK Biobank British training data subsection of the 

Results section (p. 6-9) accordingly. 

Figure 6 (formerly Figure 3) now includes PolyPred-S and PolyPred-P, and we have updated the 

Analysis of Biobank Japan and Uganda-APCDR cohorts subsection of the Results section (p.10-

12) accordingly. 

Figure 7 (formerly Figure 4) now includes PolyPred-S (and PolyPred-S+) and PolyPred-P (and 

PolyPred-P+), and we have updated the Analysis of UK Biobank East Asians using UK Biobank 

British and Biobank Japan training data subsection of the Results section (p.12-13) accordingly. 

We have also included PolyPred-S and PolyPred-P in Table 1 and in the new Figure 2, cited in 

the Overview of methods subsection of the Results section (p.4) (see part (a) of response to 

Reviewer #2 Comment 1), and in the new Figure 5, cited in the new Analysis of 4 UK Biobank 

populations using ENGAGE meta-analysis training data subsection of the Results section (p.10) 

(see part (b) of response to Reviewer #1 Comment 7 and part (b) of response to Reviewer #2 

Comment 2). 

4. last major point relates to the general methodology of linearly combining different PRS. 

Fundamentally, BOLT-LMM and Polypred-fun are capturing much of the same signal, so there is 

some double counting and some single counting of signals, which has to be sub-optimum. I would 

argue that some form of signal subtraction would make more sense. I wonder if the authors could 

comment on that point. Dealing with this issue properly is probably beyond the scope of this 

manuscript, but I think it would be helpful to consider what could be done. 

We agree that prediction accuracy could in principle be improved if it were possible to decompose 

the PolyFun-pred and BOLT-LMM predictors into shared and non-shared components, to improve 

upon double counting of shared components vs. single counting of non-shared components. 

We have updated the Discussion section (p.15) and added a subsection called Decomposing the 

PolyFun-pred and BOLT-LMM predictors into shared and non-shared components to the 

Supplementary Note (p. 8) (cited in the Discussion section, p.15) to note this potential for 

improvement. We are not currently aware of any way to decompose the BOLT-LMM and PolyFun-

pred predictors into shared and non-shared components. (We did explore the use of different 

mixing weights in different segments of the genome, but did not obtain promising results. Given 
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the large number of secondary analyses, we prefer not to include these findings in the manuscript, 

unless the editors and/or reviewers express a strong preference). 

5. Lastly, on a more minor point, the authors speak well of the SBayesR results outperforming 

PRS-CS and LDPred. This puzzles me, as I must say I never managed to get SBayesR to run 

properly. My struggles are echoed by the recent bioRxiv manuscript from Pain, Lewis and 

colleagues which I am sure the authors are aware of  

(https://doi.org/10.1101/2020.07.28.224782). I'd be keen to understand why such stark 

differences are being observed. 

The reviewer is correct that Pain et al. demonstrated that PRS-CS outperforms SBayesR in the 

presence of mismatch between the GWAS sample and the LD reference panel (Pain et al. 2021 

PLoS Genet, ref. 71). We performed a new analysis of real traits to investigate this (also see part 

(b) of response to Reviewer #1 Comment 7, part (b) of response to Reviewer #1 Comment 2, and 

part (b) of response to Reviewer #2 Comment 2). Our results are summarized in Figure 5 (and 

the new Table 2) and are detailed below. 

We used summary statistics from the European Network for Genetic and Genomic Epidemiology 

(ENGAGE) consortium (Budin-Ljøsne et al. 2014 Eur J Hum Genet, ref. 68) to train several methods 

on four traits (BMI, waist-hip-ratio (adjusted for BMI), total cholesterol, and triglycerides), and 

evaluated the prediction accuracy using the same four UK Biobank populations analyzed throughout 

our manuscript (Non-British Europeans, South-Asians, East-Asians, and Africans). We selected this 

particular meta-analysis because it includes a dense set of 8.1 million imputed SNPs, which enables 

fine-mapping. For each method, we used the same LD reference panel used in the other primary 

analyses, based on UK Biobank British individuals; we emphasize that unlike the other primary 

analyses in this manuscript, the LD reference panel was misspecified, because it was not based on 

in-sample LD. We excluded BOLT-LMM from this analysis (because 

it cannot use summary statistics) and included PRS-CS, following our decision to include PRS-

CS as a main method in the manuscript. In the following, we denote PolyPred-P as the linear 

combination of PolyFun-pred and PRS-CS, and PolyPred-S as the linear combination of PolyFun-

pred and SBayesR. 

The results are summarized in our new Figure 5 (and the new Table 2). Briefly, PolyPred-P was 

generally the most accurate method, and PRS-CS outperformed SBayesR, with a significant 

improvement for non-British Europeans and Africans (unlike when using UK Biobank training 

https://doi.org/10.1101/2020.07.28.224782
https://doi.org/10.1101/2020.07.28.224782
https://doi.org/10.1101/2020.07.28.224782


 
 

 

2 
 

 

 

data, where SBayesR outperformed PRS-CS). However, the differences between the methods 

were mostly not statistically significant due to large standard errors. 

In detail, the average relative-R2 in Non-British Europeans was 0.045 for PolyPred-P, 0.044 for 

PolyPred-S, 0.039 for PRS-CS, 0.033 for SBayesR, and 0.022 for P+T. For African-ancestry 

individuals (obtaining the lowest prediction accuracy under all methods), the average relative-R2
 

was 0.015 for PolyPred-P, 0.008 for PolyPred-S, 0.013 for PRS-CS, 0.004 for SBayesR, and 0.010 

for P+T. We reiterate that the differences between the methods were mostly not statistically 

significant due to moderately large standard errors (Figure 5), and thus caution should be exercised 

in their interpretation. Nevertheless, these results demonstrate that combining PolyFun-pred with 

another method can be beneficial when analyzing summary statistics from a meta-analysis of many 

studies. We further note that PRS-CS outperforms SBayesR in the presence of a misspecified LD 

reference panel, consistent with Pain et al. 2021 PloS Genet (ref. 71). We have added a new 

Analysis of 4 UK Biobank populations using ENGAGE meta-analysis training data subsection of the 

Results section (p.10, citing Figure 5) to include these results. 

We have also performed new simulations and real trait analyses of UK Biobank training data using 

reference LD; see part (c) (ii) of response to Reviewer #1 Comment 4 and response to Reviewer 

#1 Comment 5. 

In light of the fact that PRS-CS outperforms SBayesR in some settings, we have added PRS-CS 

and PolyPred-P as main methods throughout our revised manuscript, including Table 1, Table 2 

(new), Figure 2 (new), Figure 3 (formerly Figure 1), Figure 4 (formerly Figure 2), Figure 5 (new), 

Figure 6 (formerly Figure 3) and Figure 7 (formerly Figure 4). 
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Decision Letter, first revision: 

9th Nov 2021 

 

Dear Dr. Weissbrod, 

 

Thank you for submitting your revised manuscript "Leveraging fine-mapping and non-European training 

data to improve cross-population polygenic risk scores" (NG-A56478R1). It has now been seen by the 

original referees and their comments are below. The reviewers find that the paper has improved in 

revision, and therefore we'll be happy in principle to publish it in Nature Genetics, pending minor 

revisions to satisfy the referees' final requests and to comply with our editorial and formatting 

guidelines. 

 

If the current version of your manuscript is in a PDF format, please email us a copy of the file in an 

editable format (Microsoft Word or LaTex)-- we can not proceed with PDFs at this stage. 

 

We are now performing detailed checks on your paper and will send you a checklist detailing our 

editorial and formatting requirements soon. Please do not upload the final materials and make any 

revisions until you receive this additional information from us. 

 

Thank you again for your interest in Nature Genetics Please do not hesitate to contact me if you have 
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any questions. 

 

Sincerely, 

 

Wei 

 

Wei Li, PhD 

Senior Editor 

Nature Genetics 

New York, NY 10004, USA 

www.nature.com/ng 

 

 

Reviewer #1 (Remarks to the Author): 

 

The authors have done a tremendous job responding to the previous reviews. I think the work is 

thorough, clear, and very well done. I have no further revision suggestions. 

 

 

Reviewer #2 (Remarks to the Author): 

 

I would like to thank the authors for what is clearly a detailed reply and an improved manuscript. The 

added figures and text help clarify the work, and all comments have been taken very seriously. 

 

One minor remaining comment: I was going through the supplemental tables trying to interpret the 

performance of the method with my current benchmarks in mind, and all my personal references for 

binary traits (CVD, T2D...) are based on AUC or OR per SD. I would find it helpful to convert, for binary 

traits, the r2 statements made in these tables into the more broadly used AUC statistic. It is not 

essential, but it would help I think. 

 

To conclude, and as mentioned in my initial review, I do find the overall body of work impressive, and I 

definitely think it should be published. It does remain very technical, and perhaps longer than most 

NatGen papers, but I do not think this is a major issue. In any case, this is more an editorial than a 

review issue. From a technical perspective, the paper is sound, detailed and valuable to the field. 

  

Final Decision Letter: 

25th Feb 2022 

 

Dear Dr. Weissbrod, 
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I am delighted to say that your manuscript "Leveraging fine-mapping and multi-population training data 

to improve cross-population polygenic risk scores" has been accepted for publication in an upcoming 

issue of Nature Genetics. 

 

Over the next few weeks, your paper will be copyedited to ensure that it conforms to Nature Genetics 

style. Once your paper is typeset, you will receive an email with a link to choose the appropriate 

publishing options for your paper and our Author Services team will be in touch regarding any additional 

information that may be required. 

 

After the grant of rights is completed, you will receive a link to your electronic proof via email with a 

request to make any corrections within 48 hours. If, when you receive your proof, you cannot meet this 

deadline, please inform us at rjsproduction@springernature.com immediately. 

 

You will not receive your proofs until the publishing agreement has been received through our system. 

 

Due to the importance of these deadlines, we ask that you please let us know now whether you will be 

difficult to contact over the next month. If this is the case, we ask you provide us with the contact 

information (email, phone and fax) of someone who will be able to check the proofs on your behalf, and 

who will be available to address any last-minute problems. 

 

Your paper will be published online after we receive your corrections and will appear in print in the next 

available issue. You can find out your date of online publication by contacting the Nature Press Office 

(press@nature.com) after sending your e-proof corrections. Now is the time to inform your Public 

Relations or Press Office about your paper, as they might be interested in promoting its publication. This 

will allow them time to prepare an accurate and satisfactory press release. Include your manuscript 

tracking number (NG-A56478R2) and the name of the journal, which they will need when they contact 

our Press Office. 

 

Before your paper is published online, we shall be distributing a press release to news organizations 

worldwide, which may very well include details of your work. We are happy for your institution or 

funding agency to prepare its own press release, but it must mention the embargo date and Nature 

Genetics. Our Press Office may contact you closer to the time of publication, but if you or your Press 

Office have any enquiries in the meantime, please contact press@nature.com. 

 

Acceptance is conditional on the data in the manuscript not being published elsewhere, or announced in 

the print or electronic media, until the embargo/publication date. These restrictions are not intended to 

deter you from presenting your data at academic meetings and conferences, but any enquiries from the 

media about papers not yet scheduled for publication should be referred to us. 
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Please note that <i>Nature Genetics</i> is a Transformative Journal (TJ). Authors may publish their 

research with us through the traditional subscription access route or make their paper immediately 

open access through payment of an article-processing charge (APC). Authors will not be required to 

make a final decision about access to their article until it has been accepted. <a 

href="https://www.springernature.com/gp/open-research/transformative-journals"> Find out more 

about Transformative Journals</a> 

 

<B>Authors may need to take specific actions to achieve <a 

href="https://www.springernature.com/gp/open-research/funding/policy-compliance-faqs"> 

compliance</a> with funder and institutional open access mandates. For submissions from January 

2021, if your research is supported by a funder that requires immediate open access (e.g. according to 

<a href="https://www.springernature.com/gp/open-research/plan-s-compliance">Plan S principles</a>) 

then you should select the gold OA route, and we will direct you to the compliant route where possible. 

For authors selecting the subscription publication route our standard licensing terms will need to be 

accepted, including our <a href="https://www.springernature.com/gp/open-research/policies/journal-

policies">self-archiving policies</a>. Those standard licensing terms will supersede any other terms that 

the author or any third party may assert apply to any version of the manuscript. 

 

Please note that Nature Research offers an immediate open access option only for papers that were first 

submitted after 1 January, 2021. 

 

If you have any questions about our publishing options, costs, Open Access requirements, or our legal 

forms, please contact ASJournals@springernature.com 

 

If you have posted a preprint on any preprint server, please ensure that the preprint details are updated 

with a publication reference, including the DOI and a URL to the published version of the article on the 

journal website. 

 

To assist our authors in disseminating their research to the broader community, our SharedIt initiative 

provides you with a unique shareable link that will allow anyone (with or without a subscription) to read 

the published article. Recipients of the link with a subscription will also be able to download and print 

the PDF. 

 

As soon as your article is published, you will receive an automated email with your shareable link. 

 

You can now use a single sign-on for all your accounts, view the status of all your manuscript 

submissions and reviews, access usage statistics for your published articles and download a record of 

your refereeing activity for the Nature journals. 
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An online order form for reprints of your paper is available at <a 

href="https://www.nature.com/reprints/author-

reprints.html">https://www.nature.com/reprints/author-reprints.html</a>. Please let your coauthors 

and your institutions' public affairs office know that they are also welcome to order reprints by this 

method. 

 

If you have not already done so, we invite you to upload the step-by-step protocols used in this 

manuscript to the Protocols Exchange, part of our on-line web resource, natureprotocols.com. If you 

complete the upload by the time you receive your manuscript proofs, we can insert links in your article 

that lead directly to the protocol details. Your protocol will be made freely available upon publication of 

your paper. By participating in natureprotocols.com, you are enabling researchers to more readily 

reproduce or adapt the methodology you use. Natureprotocols.com is fully searchable, providing your 

protocols and paper with increased utility and visibility. Please submit your protocol to 

https://protocolexchange.researchsquare.com/. After entering your nature.com username and 

password you will need to enter your manuscript number (NG-A56478R2). Further information can be 

found at https://www.nature.com/nprot/. 

 

 

Sincerely, 

 

Wei Li, PhD 

Senior Editor 

Nature Genetics 

New York, NY 10004, USA 

www.nature.com/ng 

 


